Q.P. Code: 16ME320

Reg. No:					1	117	8			
----------	--	--	--	--	---	-----	---	--	--	--

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech III Year II Semester Supplementary Examinations July-2021 HEAT TRANSFER

(Mechanical Engineering)

Time: 3 hours

Max. Marks: 60

6M

6M

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

- a Define the following terms. i)Heat ii)Heat transfer
 b List the some important areas which are covered under the discipline of heat transfer.
 A What is Fourier's law of conduction? State the assumption and essential feature of it.
 - b Define the following terms.i) Thermal Conductivity ii) Thermal Resistance

UNIT-II

3 a Derive an expression for heat conduction through a plane wall

b The inner surface of a plane Brick wall is at 60 °C and the outer surface is at 5M 35 °C. Calculate the rate of heat transfer per m² of surface area of the wall, 6M which is 220 mm thick. Take thermal conductivity of the brick is 0.51 W/ m°C.

OR

A steam pipe of outside diameter 80 mm and 25 m long conveys 800 kg of steam per hour at a pressure of 22 bar. The steam enters the pipe with a dryness fraction of 0.99 and is to leave the other end of the pipe with the minimum dryness fraction of 0.97. This is to be accomplished by using a lagging material (k = 0.2 W/m ⁰C), determine its minimum thickness to meet the necessary condition, if the temperature of the outside surface of lagging is 25 ⁰C. Assume that there is no pressure drop across the pipe and the resistance of the pipe material is negligible.

UNIT-III

5 Explain hydrodynamic and thermal boundary layer with reference to flow over flat plate. 12M

OR

6 Air at 20 ⁰C and at a pressure of 1 bar is flowing over a flat plate at a Velocity of 3 m/s. If the plate is 280 mm wide and at 56 ⁰C. Calculate the following quantities at x

= 280 mm, given that properties of air at the bulk mean temperature $\left(\frac{20+56}{2}\right) = 38$ °C are $\rho = 1.1374$ kg/m³, k = 0.02732 W/m °C, c_p = 1.005 kJ/kg K, $\upsilon = 16.76 \times 10^{-6}$ m²/s, Pr = 0.7

i. Boundary layer thickness

ii. Local friction coefficient

iii. Average friction coefficient

iv. Thickness of the boundary layer

UNIT-IV

R16

7	a Differentiate between the mechanism of film wise and dropwise Condensation.	6M				
	b Explain briefly the condensation mechanism on the vertical plate	6M				
	OR					
8	Saturated steam at $t_{sat} = 90$ ⁰ C (P= 70.14 kPa) condenses on the outer surface of a 1.5 m					
	long 2.5 m OD vertical tube maintained at a uniform temperature $t_{\infty} = 70$ ⁰ C. Assuming					
	film condensation. Calculate					
	i). The local transfer coefficient at the bottom of the tube, and	12M				
	ii). The average heat transfer coefficient over the entire length of the tube. Properties of water of 80 0 C, $\rho_{l} = 974$ kg/m ³ , $k_{t} = 0.668$ W/mK, $\mu_{l} = 0.335 \times 10^{3}$ kg/m ³ ,					
	$h_{fg} = 2309 \text{ kJ/kg}, \rho_v \ll \rho_l$					
	UNIT-V					
9	9 a Define Radiation heat transfer.					
	b Define the term absorptivity, reflectivity and transmittivity of radiation.	8M				
	OR					
10	The effective temperature of the body having an area of 0.12 m ² is 527 °C.					
	Calculate the following	1214				
	i) The total rate of energy emission	12M				
	ii) The wave length of maximum monochromatic emissive power.					

*** END ***

Page 2 of 2